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Abstract. In the last decade, multiplicative cascades have been introduced as an 

efficient tool to simulate data with nonlinear long-range dependence that can be 
observed very broadly in nature, including many processes and structures in physics, 
biology, medicine, geoscience, climate and other complex systems. It has been revealed 
that long-range dependence affects significantly return interval statistics leading to 
broader probability density functions and pronounced conditional memory. Recently 
several tools aiming at predicting extremes in long-range dependent data have been 
suggested. Finite size effects appear a significant limitation for return interval statistics 
in long-range dependent data. Here an analytical functional form for the probability 
density function of the return intervals in a deterministic multiplicative cascade model 
for any given threshold level and data length is suggested. It is also shown that this 
functional form remains valid over several decades in the randomized multiplicative 
cascade, a model often used to simulate nonlinear long-range dynamics in complex 
systems. The solution aims at overcoming finite size effect limitations in various 
applications related to long-range dependent data analysis. 
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Introduction 
In the last decade mathematical models with linear and nonlinear long-range 

dependence have been widely adopted for the statistical description of the processes and 
structures in various complex systems with scale-invariant properties. Relevant 
properties have been observed, for example, in the primary DNA [Peng et al., 1994] and 
protein [Yu et al., 2003] structure, physiological rhythms [Ivanov et al., 1996], [Ivanov et 
al., 1999] and many other data records from complex systems. It has been shown that 
scale-invariant models can be used efficiently, for example, as diagnostic tools in 
biomedical research [Huikuri et al., 2003], [Sokolova et al., 2011]. Recently suggested 



algorithms of extreme events prediction in long-range dependent data series that utilize 
the return intervals distribution [Bogachev et al., 2009] are based on the results of 
numerical simulations, and thus their accuracy is limited by finite size effects. To 
overcome these limitations, an analytical solution for the distribution of the return 
intervals in the multifractal data is required. 

 

Material and methods 
Algorithms based on various modifications of the multiplicative cascade 

procedure are the most common ways to generate nonlinearly long-range dependent 
data. A simple multiplicative cascade is implemented as follows. First, an initial value 
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= ∏  is generated. Various modifications of the multiplicative cascade 

algorithm are related to the choice of the multipliers ml, and also to the selection of 
different model parameters r, N. Fundamental properties of the multiplicative cascades 

remain under significant variations of the model parameters. Since ( )1
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∏ ∑  follow a lognormal distribution, since 
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∑  follow Gaussian distribution for large n due to the central limit theorem. When 

( )n
ix  can be either positive or negative, the distribution has lognormal tails. The most 

common case in computer simulations is r = 2, and the relevant cascade is often called 
binomial.  

In the simplest version of the binomial cascade multipliers are fixed, i.e. ml = a for 
any odd l and ml = b for any even l. Often in the literature, this implementation is 
referred as an ab-model. When a + b = 1, the binomial model is called the canonical 
binomial cascade [Mandelbrot, 2001]. This variant of the model is fully deterministic, 
and thus the final realization xi can be described exactly for any given i and iteration 
number n. The deterministic structure of this model results in some artificial properties 



of the final data series. For example, when a > b, the first value in the final data series 
will always be the global maximum, and thus for large a values the record is showing a 
trend, in contrast to our expectations from real world complex systems.  

The simplest way of introducing a random component into the ab-model is to 
choose randomly at each step, either odd or even multiplier will be a, then the remaining 
one will be b. Since for the canonical model b = 1 – a, the integral of the data series is 
preserved. For an example of the ab-model with randomly chosen multipliers, see Fig.1a. 

 
Results. 
Next, the statistics of return intervals between events ix Q>  that exceed various 

thresholds Q have been analyzed, see Fig. 1b. An important indicator is the distribution 
of the return intervals for various thresholds. For the deterministic variant of the ab-
model, only n–2 nontrivial thresholds are available.  

Figure 2 shows that the histogram of the return intervals for the deterministic ab-
model is given by the diagonals of the Pascal's triangle. To obtain the relevant histogram 
values, one has to remove the last element in each row of Pascal's triangle, i.e., at the 
right edge of the triangle a full line (containing of ones) should be eliminated. The 
original Pascal's triangle is shown in Fig. 2a, the modified triangle is shown in Fig. 2b. 
Line numbers in Fig. 2 refer to the number of iterations n in the binomial cascade model. 

Let us assume n = 10. For the first nontrivial threshold (j = 1) the histogram 
values are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, for the third threshold (j = 3) they are: 1, 4, 10, 20, 
35, 56, 84, 120 (underlined on Fig. 2b). 

Each element of the triangle is a binomial coefficient k
nC . Thus histogram values 

for any given threshold can be described as: 

 
 

 
 

 
 
The probability density function of return intervals PQ(τ) can be easily obtained as 

a normalized histogram and can be expressed as function of the threshold for τ > 1 as 
shown in Fig. 3. In Fig. 3 τ is return interval between peaks reduced by 1, TQ  is the 
average interval τ for a certain threshold. The solid lines show the analytical solution 

0 0 1
1 1

0 0 2
2 3

0 0
1

1 : ...

2 : ...

: ...

st n
n

nd n
n
n j

j j n

threshold C C C

threshold C C C

j threshold C C C

−

−

−
+

−

−

−



according to Fig. 2, and the dotted line – the result of a numerical experiment for one 
realization obtained with n = 15. Good agreement of the simulation results with the 
proposed analytical solution indicate that it can be extrapolated to the randomized 
cascade model. 

 

Conclusions. 
It is known that the return interval statistics for randomized model are in good 

agreement with the data obtained in the biological structures and physiological processes 
analysis. Therefore using the proposed approach by varying the parameters n and j one 
can easily reproduce the relevant statistics for arbitrary n values without performing any 
numerical simulation. Since the solution can be extrapolated to whatever large n values, 
it can be used to avoid finite size effects. On the other hand when dealing with various 
numerical estimates by choosing relevant n values one can reproduce typical finite size 
effects for given data lengths. By comparing numerical and analytical results and 
running appropriate statistical tests, one can also estimate the probabilities that a 
deviation from cascade-like return interval distribution is due to finite size effects or is a 
result of the internal randomness in the studied dynamical system, that may be 
superimposed to the long-range dependent character of the data. 
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Fig. 1. Random ab-model synthesis algorithm (a);  
deterministic model realization for n = 5 (b) 
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Fig. 2. Pascal triangle 

 
Fig. 3. Probability density function for analytical solution (black)  

and for numerical experiment (blue) 


