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Abstract. In the last decade, multiplicative cascades haen etroduced as an
efficient tool to simulate data with nonlinear lerapge dependence that can be
observed very broadly in nature, including manycpeses and structures in physics,
biology, medicine, geoscience, climate and othenglex systems. It has been revealed
that long-range dependence affects significantlyrre interval statistics leading to
broader probability density functions and pronouhoenditional memory. Recently
several tools aiming at predicting extremes in fomgge dependent data have been
suggested. Finite size effects appear a signifitantiation for return interval statistics
in long-range dependent data. Here an analyticattional form for the probability
density function of the return intervals in a deteristic multiplicative cascade model
for any given threshold level and data length iggested. It is also shown that this
functional form remains valid over several decaoeshe randomized multiplicative
cascade, a model often used to simulate nonlimeag-lange dynamics in complex
systems. The solution aims at overcoming finitee seffect limitations in various
applications related to long-range dependent daly/sis.
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I ntroduction

In the last decade mathematical models with liread nonlinear long-range
dependence have been widely adopted for the statidescription of the processes and
structures in various complex systems with scalesiant properties. Relevant
properties have been observed, for example, ipringary DNA [Peng et al., 1994and
protein [Yu et al., 200Bstructure, physiological rhythmévgnov et al., 199 [Ivanov et
al., 1999 and many other data records from complex systéirigas been shown that
scale-invariant models can be used efficiently, dslample, as diagnostic tools in
biomedical researctHuikuri et al., 2003 [Sokolova et al., 20)11Recently suggested



algorithms of extreme events prediction in longg@amlependent data series that utilize
the return intervals distributiorBpgachev et al., 200%re based on the results of
numerical simulations, and thus their accuracyinsitéd by finite size effects. To
overcome these limitations, an analytical solution the distribution of the return
intervals in the multifractal data is required.

Material and methods

Algorithms based on various modifications of the ltiplicative cascade
procedure are the most common ways to generateénearlly long-range dependent
data. A simple multiplicative cascade is implemdnas follows. First, an initial value

x£0) is multiplied byr different multipliersm(l), wherel changes from 1 to, this way

1)

producing a data series af values x£1)x§ . Next, this procedure is repeated

iteratively for each value of the new data sergesl afteiN iterations a data series Of

n
values xi(“) = rr](k) is generated. Various modifications of the muiiglive cascade
k=1

algorithm are related to the choice of the mukdim, and also to the selection of
different model parameters N. Fundamental properties of the multiplicative cales

remain under significant variations of the modelrapaeters. Sincerq(l) are

xi(”) = ﬁ rr](k) typically independent and identically distributéd i. d.) values, then
k=1

- (n)_ D (K _ n m(k) . .
positive valuesx'’ =] m "~ =exp X Inm"” | follow a lognormal distribution, since
k=1 k=1

n .
In m,(‘) follow Gaussian distribution for largedue to the central limit theorem. When
=1

i
xi(”) can be either positive or negative, the distrinuthas lognormal tails. The most
common case in computer simulations s 2, and the relevant cascade is often called
binomial.

In the simplest version of the binomial cascadetiplidrs are fixed, i.em =a for
any oddl andm = b for any evenl. Often in the literature, this implementation is
referred as amb-model. Whena + b = 1, the binomial model is called the canonical
binomial cascadeMandelbrot, 200l This variant of the model is fully deterministic
and thus the final realizatiom can be described exactly for any giveand iteration
numbern. The deterministic structure of this model resuitsome artificial properties



of the final data series. For example, wiaen b, the first value in the final data series
will always be the global maximum, and thus fogksa values the record is showing a
trend, in contrast to our expectations from realldvoomplex systems.

The simplest way of introducing a random componatd the ab-model is to
choose randomly at each step, either odd or evdiiphar will be a, then the remaining
one will beb. Since for the canonical model= 1 —a, the integral of the data series is
preserved. For an example of tdlemodel with randomly chosen multipliers, see Fig.la

Results.
Next, the statistics of return intervals betweeprgs x, >Q that exceed various

thresholdQ have been analyzed, see Fig. 1b. An importantatdr is the distribution
of the return intervals for various thresholds. Hue deterministic variant of thab-
model, onlyn—2 nontrivial thresholds are available.

Figure 2 shows that the histogram of the returarvals for the deterministiab-
model is given by the diagonals of the Pascabsigie. To obtain the relevant histogram
values, one has to remove the last element in eaglof Pascal's triangle, i.e., at the
right edge of the triangle a full line (containim§ ones) should be eliminated. The
original Pascal's triangle is shown in Fig. 2a, madified triangle is shown in Fig. 2b.
Line numbers in Fig. 2 refer to the number of itierzsn in the binomial cascade model.

Let us assumeé = 10. For the first nontrivial thresholgl € 1) the histogram
values are: 1, 2, 3,4, 5, 6,7, 8, 9, 10, forthuel thresholdj(= 3) they are: 1, 4, 10, 20,
35, 56, 84, 120 (underlined on Fig. 2b).

Each element of the triangle is a binomial co@m@r‘f. Thus histogram values
for any given threshold can be described as:

1%t —threshold: @ @... ¢1
2" threshold: @ §... ¢72
j —threshold: C? (fﬂ___ oal

The probability density function of return inters&lo(z) can be easily obtained as
a normalized histogram and can be expressed adnraf the threshold for > 1 as
shown in Fig. 3. In Fig. 3 is return interval between peaks reduced bygl,is the
average intervat for a certain threshold. The solid lines show thalgical solution



according to Fig. 2, and the dotted lin¢he result of a numerical experiment for one
realization obtained witm = 15. Good agreement of the simulation result$ white
proposed analytical solution indicate that it cam dxtrapolated to the randomized
cascade model.

Conclusions.

It is known that the return interval statistics fandomized model are in good
agreement with the data obtained in the biologstaictures and physiological processes
analysis. Therefore using the proposed approackabyng the parametersandj one
can easily reproduce the relevant statistics foitrary n values without performing any
numerical simulation. Since the solution can beagpdlated to whatever largevalues,
it can be used to avoid finite size effects. Ondtieer hand when dealing with various
numerical estimates by choosing relevamalues one can reproduce typical finite size
effects for given data lengths. By comparing nuo@riand analytical results and
running appropriate statistical tests, one can a@stmate the probabilities that a
deviation from cascade-like return interval digitibn is due to finite size effects or is a
result of the internal randomness in the studietadyical system, that may be
superimposed to the long-range dependent charaictiee data.
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Fig. 1. Random ab-model synthesis algorithm (a);
deterministic model realization for= 5 (b)
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Fig. 2. Pascal triangle

T T T T

LLELL BRRLLL IR B ELL R L B ARELLL BERLLL L

-9 Lo

[

T T T T

L ovvvond vl vovd cvnd vod v v vl 1

E_1 o

Lol Lo

10

—_
oI
w2

10"

T/TQ

10"

10

Fig. 3. Probability density function for analyticlution (black)
and for numerical experiment (blue)



